PERANAN SISTEM IMUNITAS MELAWAN INFEKSI TUBERKULOSIS PARU-PARU

Widaninggar Rahma Putri

Abstract


Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis evoked more than 1 million mortality every year and infected more than a quarter population worldwide. Host immunity systems against tuberculosis provided by innate immunity and adaptive immunity. Molecules and cells in both of immunity systems undertaking this mechanism and initiate each other facing infection from very first bacterial exposure inside the host. Immunity systems against bacteria development from inhalation step through granuloma initiation and antibody anti-tuberculosis. Host’s mechanism against tuberculosis is urge to presumed in order to develop strategies based on immunology to decreasing tuberculosis incidence worldwide


Keywords


Tuberculosis; Mycobacterium tuberculosis; innate immunity; adaptive immunity.

Full Text:

PDF

References


WHO. Global Tuberculosis Report 2021. Geneva; 2021. 30 p.

Batista LAF, Silva KJS, da Costa e Silva LM, de Moura YF, Zucchi FCR. Tuberculosis: A granulomatous disease mediated by epigenetic factors. Tuberculosis. 2020;123(May).

Brooks GF, Carroll KC, BUtel JS, Morse SA, Mietzner TA. Medical Microbiology Twenty-Sicth Edition. Https://Medium.Com/. New York: Mc Graw Hill Medical Company; 2013.

Maison DP. Tuberculosis pathophysiology and anti-VEGF intervention. J Clin Tuberc Other Mycobact Dis [Internet]. 2022;27(January):100300. Available from: https://doi.org/10.1016/j.jctube.2022.100300

Abbas A, Litchman A, Pillai S. Basic Immunonogy- Functions and Disorders of the Immune System 6th Edition. 6th Editio. Elsevier Inc.; 2019.

Petrilli JD, Araújo LE, da Silva LS, Laus AC, Müller I, Reis RM, et al. Whole blood mRNA expression-based targets to discriminate active tuberculosis from latent infection and other pulmonary diseases. Sci Rep. 2020 Dec 16;10(1):22072.

Corleis B, Dorhoi A. Early dynamics of innate immunity during pulmonary tuberculosis. Immunol Lett [Internet]. 2020;221:56–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082090709&doi=10.1016%2Fj.imlet.2020.02.010&partnerID=40&md5=8f3923fa809480bf5127aba1dd6e1624

Mar’iyah K, Zulkarnain. Patofisiologi penyakit infeksi tuberkulosis. Pros Semin Nas Biol [Internet]. 2021;7(November):88–92. Available from: https://doi.org/10.24252/psb.v7i1.23169

Garra AO, Redford PS, Mcnab FW, Bloom CI, Wilkinson RJ, Berry MPR. The Immune Response in Tuberculosis. 2013.

Kaufmann SHE. EFIS lecture. Immune response to tuberculosis: How to control the most successful pathogen on earth. Immunol Lett [Internet]. 2016;175:50–7. Available from: http://dx.doi.org/10.1016/j.imlet.2016.05.006

McDonald DR, Levy O. 3 - Innate Immunity. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CMBT-CI (Fifth E, editors. London: Elsevier; 2019. p. 39-53.e1. Available from: https://www.sciencedirect.com/science/article/pii/B978070206896600003X

Rajaram MVS, Arnett E, Azad AK, Guirado E, Ni B, Gerberick AD, et al. M. tuberculosis-Initiated Human Mannose Receptor Signaling Regulates Macrophage Recognition and Vesicle Trafficking by FcRγ-Chain, Grb2, and SHP-1. Cell Rep [Internet]. 2017;21(1):126–40. Available from: https://www.sciencedirect.com/science/article/pii/S2211124717313098

Cummings RD. The mannose receptor ligands and the macrophage glycome. Curr Opin Struct Biol [Internet]. 2022;75:102394. Available from: https://www.sciencedirect.com/science/article/pii/S0959440X22000732

Natarajan K, Kundu M, Sharma P, Basu J. Innate immune responses to M . tuberculosis infection. Tuberculosis [Internet]. 2011;91(5):427–31. Available from: http://dx.doi.org/10.1016/j.tube.2011.04.003

Ferluga J, Yasmin H, Al-ahdal MN, Bhakta S, Kishore U. Immunobiology Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology [Internet]. 2020;225(3):151951. Available from: https://doi.org/10.1016/j.imbio.2020.151951

Mertaniasih NM, Khaendori EB, Kusumaningrum D. Buku Ajar Tuberkulosis Diagnostik Mikrobiologi. Surabaya: Pusat Penerbitan dan Percetakan Universitas Airlangga; 2013.

Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D, et al. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun. 2008 Mar;76(3):935–41.

Tamburini B, Badami GD, Azgomi MS, Dieli F, La Manna MP, Caccamo N. Role of hematopoietic cells in Mycobacterium tuberculosis infection. Tuberculosis [Internet]. 2021;130(July):102109. Available from: https://doi.org/10.1016/j.tube.2021.102109

Shao SL, Cong HY, Wang MY, Liu P. The diagnostic roles of neutrophil in bloodstream infections. Immunobiology [Internet]. 2020;225(1):151858. Available from: https://doi.org/10.1016/j.imbio.2019.10.007

Harris J, Keane J. How tumour necrosis factor blockers interfere with tuberculosis immunity. Clin Exp Immunol. 2010;161(1):1–9.

Rosyidah F, Mertaniasih NM, Isnaeni. Evaluation of IFN-γ level in peripheral blood mononuclear cell of childhood tuberculosis treated by lactic acid bacteria multi cultures. Vol. 24, Journal of Research in Pharmacy. 2020. p. 188–95.

Matty MA, Roca FJ, Cronan MR, Tobin DM, Tobin DM. Adventures within the speckled band : heterogeneity , angiogenesis , and balanced inflammation in the tuberculous granuloma. 2015;264:276–87.

Wijaya C. Tinjauan Pustaka Peranan Sel Sistem Imun Alamiah Pada Infeksi Mycobacterium tuberculosis. 2022;(September):71–8.

Gray KJ, Gibbs JE. Adaptive immunity, chronic inflammation and the clock. Semin Immunopathol [Internet]. 2022;44(2):209–24. Available from: https://doi.org/10.1007/s00281-022-00919-7

Barber-Mayer KD, Barber DL. Innate and adaptive cellular immune responses to Mycobacterium tuberculosis infection. Cold Spring Harb Perspect Med. 2015;5(12):1–19.

Saunders BM, Frank AA, Orme IM, Cooper AM. CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol [Internet]. 2002;216(1):65–72. Available from: https://www.sciencedirect.com/science/article/pii/S0008874902005105

Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, Caspar P, et al. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity. 2011 Dec;35(6):1023–34.

Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. 2015;239–49.

Qin S, Chen R, Jiang Y, Zhu H, Chen L, Chen Y, et al. International Immunopharmacology Multifunctional T cell response in active pulmonary tuberculosis patients. Int Immunopharmacol [Internet]. 2021;99(May):107898. Available from: https://doi.org/10.1016/j.intimp.2021.107898

Segueni N, Jacobs M, Ryffel B. ScienceDirect Innate type 1 immune response , but not IL-17 cells control tuberculosis infection. Biomed J [Internet]. 2020;44(2):165–71. Available from: https://doi.org/10.1016/j.bj.2020.06.011

Polena H, Boudou F, Tilleul S, Dubois-Colas N, Lecointe C, Rakotosamimanana N, et al. Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Sci Rep. 2016;6(August):1–11.

Long JE, Drayson MT, Taylor AE, Toellner KM, Lord JM, Phillips AC. Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial. Vaccine. 2016 May;34(24):2679–85.




DOI: https://doi.org/10.33992/meditory.v11i1.2373

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Meditory

POLTEKKES KEMENKES DENPASAR
Address: Jl. Sanitasi No.1, Sidakarya, Denpasar Selatan, Kota Denpasar, Bali 80224 (0361) 710447