Natural Biomass Adsorbents from Seaweed and Coconut Fiber for Weaving Wastewater Treatment: A Study on TDS, TSS, and Color Reduction

Cok Dewi Widhya Hana Sundari, Ida Ayu Made Sri Arjani, I Wayan Karta, Surya Natallia Bryan

Abstract


The weaving industry generates wastewater containing high levels of suspended solids, dissolved solids, and synthetic dyes that can threaten aquatic ecosystems if discharged untreated. This study investigates the effectiveness of seaweed and coconut husk powder as combined adsorbents for improving weaving wastewater quality in Nusa Penida, Bali. Three treatment variations (V1, V2, and V3) were applied, while untreated wastewater served as the control. Key parameters measured included Total Suspended Solids (TSS), Total Dissolved Solids (TDS), and color, using standard water quality assessment methods. Results showed that treatment V3 provided the highest pollutant removal efficiency. TSS decreased significantly from 72.89 mg/L in the control to 14.78 mg/L after V3 treatment, while color values reduced drastically from 2202.6 TCU to 235.61 TCU. TDS also exhibited notable reductions, confirming the strong adsorption capacity of the combined materials. The superior performance of V3 suggests that the optimal ratio of seaweed and coconut husk powder enhances binding capacity and surface interaction with pollutants. Compared to conventional treatments, this method is cost-effective, environmentally friendly, and utilizes locally abundant resources, making it highly suitable for small-scale industries. Overall, the study demonstrates the potential application of natural adsorbents as a sustainable solution for weaving wastewater management, while further research is recommended to optimize large-scale application and evaluate reusability of the adsorbents

Keywords


weaving wastewater treatment, TDS, TSS, color, adsorbent, seaweed, coconut fiber

Full Text:

PDF PDF

References


Abdel-fatah, M. A. (2023). Integrated Management of Industrial Wastewater in the Food Sector. Sustainability, 15(23).

Abdul Rahim, A. R., Johari, K., Saman, N., & Mat, H. (2021). Sustainable Conversion of Coconut Wastes into Useful Adsorbents BT - Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. In O. V. Kharissova, L. M. Torres-Martínez, & B. I. Kharisov (Eds.), Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. (pp. 631–667). Springer International Publishing. https://doi.org/10.1007/978-3-030-36268-3_121

Abolore, R. S., Jaiswal, S., & Jaiswal, A. K. (2024). Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydrate Polymer Technologies and Applications, 7(November 2023), 1–28. https://doi.org/10.1016/j.carpta.2023.100396

Adjovu, G. E., Stephen, H., James, D., & Ahmad, S. (2023). Measurement of Total Dissolved Solids and Total Suspended Solids in Water Systems: A Review of the Issues, Conventional, and Remote Sensing Techniques. Remote Sensing, 15(14), 1–43. https://doi.org/10.3390/rs15143534

Akcaalan, R., Devesa-Garriga, R., Dietrich, A., Steinhaus, M., Dunkel, A., Mall, V., Manganelli, M., Scardala, S., Testai, E., Codd, G. A., Kozisek, F., Antonopoulou, M., Ribeiro, A. R. L., Sampaio, M. J., Hiskia, A., Triantis, T. M., Dionysiou, D. D., Puma, G. L., Lawton, L., … Kaloudis, T. (2022). Water taste and odor (T&O): Challenges, gaps and solutions from a perspective of the WaterTOP network. Chemical Engineering Journal Advances, 12, 1–9. https://doi.org/10.1016/j.ceja.2022.100409

Amaechi, P. ., Elenwo, C. ., & Dimkpa, S. O. N. (2024). Langmuir and Freundlich Isotherm Models’ Description of P. Adsorption Capacity of Wetland and Upland Soil in Rivers State. Global Journal of Agricultural Research, 12(3), 14–29. https://doi.org/10.37745/gjar.2013/vol12n31429

Amir, F. L. (2017). Pengembangan Kain Tenun Cepuk Sebagai Bagian Pariwisata Budaya Berkelanjutan Di Nusa Penida. Jurnal Ilmiah Hospitality Management, 8(1), 29–38.

Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., & Nasri, N. S. (2018). Treatment of wastewater using seaweed: A review. International Journal of Environmental Research and Public Health, 15(12), 1–17. https://doi.org/10.3390/ijerph15122851

Azanaw, A., Birlie, B., Teshome, B., & Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6(July), 100230. https://doi.org/10.1016/j.cscee.2022.100230

Biyada, S., & Urbonavičius, J. (2025). Circularity in textile waste: Challenges and pathways to sustainability. Cleaner Engineering and Technology, 24, 1–11. https://doi.org/10.1016/j.clet.2025.100905

Chaurasia, P., Jasuja, N. D., & Kumar, S. (2023). Textile Effluent Treatment Methods and Limitations: a Sustainable and Ecological Aspect. Suranaree Journal of Science and Technology, 30(6). https://doi.org/10.55766/sujst-2023-06-e01655

Chukwu, M. M., Ononogbo, C., Nwakuba, N. R., Obijiaku, R. E., Obijiaku, J. C., Chukwuezie, O. C., & Nwosu, O. U. (2022). Adsorptive Capacity of Coconut Fibre Carbon Activated by Potassium Hydroxide for Wastewater Treatment. International Journal of Advanced Science and Engineering, 9(2), 2669–2677. https://doi.org/10.29294/IJASE.9.2.2022.2669-2677

Dungani, R., Karina, M., Subyakto, Sulaeman, A., Hermawan, D., & Hadiyane, A. (2016). Agricultural waste fibers towards sustainability and advanced utilization: A review. Asian Journal of Plant Sciences, 15(1), 1–14. https://doi.org/10.3923/ajps.2016.42.55

Elgarahy, A. M., Elwakeel, K. Z., Mohammad, S. H., & Elshoubaky, G. A. (2021). A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology, 4, 1–15. https://doi.org/10.1016/j.clet.2021.100209

Etale, A., Onyianta, A. J., Turner, S. R., & Eichhorn, S. J. (2023). Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chemical Reviews, 123(5), 2016–2048. https://doi.org/10.1021/acs.chemrev.2c00477

Hasan, A., Rabbi, M. S., & Maruf Billah, M. (2022). Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials, 4(April), 100078. https://doi.org/10.1016/j.clema.2022.100078

Hentati, F., Tounsi, L., Djomdi, D., & , Guillaume Pierre 1 , Cédric Delattre 1, 4 Alina Violeta Ursu 1, Imen Fendri 5, S. A. 2 and P. M. 1. (2020). Bioactive Polysaccharides from Seaweeds. Molecules, 25(14), 1–29.

Islam, M. M., Aidid, A. R., Mohshin, J. N., Mondal, H., Ganguli, S., & Chakraborty, A. K. (2025). A critical review on textile dye-containing wastewater: Ecotoxicity, health risks, and remediation strategies for environmental safety. Cleaner Chemical Engineering, 11, 1–19. https://doi.org/10.1016/j.clce.2025.100165

Jakka, V., Goswami, A., Nallajarla, A. K., Roy, U., Srikanth, K., & Sengupta, S. (2023). Coconut coir–derived nanocellulose as an efficient adsorbent for removal of cationic dye safranin-O: a detailed mechanistic adsorption study. Environmental Science and Pollution Research, August, 1–23. https://doi.org/10.1007/s11356-023-29075-7

Jang, E. S. (2023). Sound Absorbing Properties of Selected Green Material—A Review. Forests, 14(7). https://doi.org/10.3390/f14071366

Liu, Y., Biswas, B., & Hassan, M. (2024). Green Adsorbents for Environmental Remediation : Synthesis. Proceses, 12(06), 1–24.

Mamede, M., Cotas, J., Bahcevandziev, K., & Pereira, L. (2023). Seaweed Polysaccharides in Agriculture: A Next Step towards Sustainability. Applied Sciences, 13(11), 1–15. https://doi.org/10.3390/app13116594

Mishra, L., & Basu, G. (2020). Coconut fibre: its structure, properties and applications. In Handbook of Natural Fibres (Issue 1, pp. 1–27).

Ortiz-Martínez, M., Restori-Corona, B., Hernández-García, L., & Alonso-Segura, D. (2024). Polysaccharides and Composite Adsorbents in the Spotlight for Effective Agrochemical Residue Removal from Water. Macromol, 4(4), 785–804. https://doi.org/10.3390/macromol4040047

Pushpalatha, N., Sreeja, V., Karthik, R., & Saravanan, G. (2022). Total Dissolved Solids and Their Removal Techniques. International Journal of Environmental Sustainability and Protection, 2(2), 13–20. https://doi.org/10.35745/ijesp2022v02.02.0002

Sabara, Z., Anwar, A., Yani, S., Prianto, K., Junaidi, R., Umam, R., & Prastowo, R. (2022). Activated Carbon and Coconut Coir with the Incorporation of ABR System as Greywater Filter: The Implications for Wastewater Treatment. Sustainability (Switzerland), 14(2). https://doi.org/10.3390/su14021026

Sharma, A., Dubey, S., Singh, K., Mittal, R., Quille, P., & Rajauria, G. (2025). Innovative Processing and Industrial Applications of Seaweed. Phycology, 5(1), 1–27. https://doi.org/10.3390/phycology5010010

Soares Dias, A. P., Santos, F. A., Rijo, B., Simes, D. C., Pereira, L., & Pereira, M. F. C. (2025). Seaweed-Derived Biochar for Effective Treatment of Dye-Contaminated Wastewater. Water (Switzerland), 17(8), 1–22. https://doi.org/10.3390/w17081215

Sundari, C. D., Arjani, I. A., Wilan Krisna, L. A., Karta, I. W., Jirna, I. N., Suriani, N. L., & Mariani3, M. (2024). The Efficacy of Seaweed Powder Application for Enhancing Wastewater Quality in the Cepuk Textile Industry of Nusa Penida. Tropical Plantation Journal, 3(1), 11–19. https://doi.org/10.56125/tpj.v3i1.35

Sundari, C. D. W. H., Arjani, I. A. M. S., Karta, I. W., & Bryan, S. N. (2024). The Effectiveness of Seaweed and Coconut Fiber Combination as Adsorbents for Wastewater Treatment in Weaving Home Industries in Nusa Penida , Klungkung , Bali : A Study on BOD , COD , and DO Quality. Internasional Conference On Multidisciplinary Approaches In Health Science, 2, 285–295.

Thamer, B. M., Al-aizari, F. A., & Abdo, H. S. (2023). Enhanced Adsorption of Textile Dyes by a Novel Sulfonated Activated Carbon Derived from Pomegranate Peel Waste: Isotherm, Kinetic and Thermodynamic Study. Molecules, 28(23).

Trica, B., Delattre, C., Gros, F., Ursu, A. V., Dobre, T., Djelveh, G., Michaud, P., & Oancea, F. (2019). Extraction and Characterization of Alginate from an Edible Brown Seaweed (Cystoseira barbata) Harvested in the Romanian Black Sea. Marine Drugs, 17(7). https://doi.org/10.3390/md17070405

Tsoutsa, E. K., Tolkou, A. K., & Kyzas, G. Z. (2024). New Trends in Composite Coagulants for Water and Wastewater Treatment. Macromol, 40(30), 509–532.

Vasić, V., Kukić, D., Šćiban, M., Đurišić-Mladenović, N., Velić, N., Pajin, B., Crespo, J., Farre, M., & Šereš, Z. (2023). Lignocellulose-Based Biosorbents for the Removal of Contaminants of Emerging Concern (CECs) from Water: A Review. Water (Switzerland), 15(10). https://doi.org/10.3390/w15101853

Vieira, F., Santana, H. E. P., Jesus, M., Mata, F., Pires, P., Vaz-Velho, M., Silva, D. P., & Ruzene, D. S. (2024). Comparative Study of Pretreatments on Coconut Fiber for Efficient Isolation of Lignocellulosic Fractions. Sustainability (Switzerland) , 16(11), 1–21. https://doi.org/10.3390/su16114784

Yadav, M., Singh, N., Annu, Khan, S. A., Raorane, C. J., & Shin, D. K. (2024). Recent Advances in Utilizing Lignocellulosic Biomass Materials as Adsorbents for Textile Dye Removal: A Comprehensive Review. Polymers, 16(17). https://doi.org/10.3390/polym16172417

Zdiri, K., Elamri, A., Erard, A., & Salaun, F. (2022). Alginate-Based Bio-Composites and Their Potential Applications. Journal of Funtional Biomaterials, 13(03), 1–31.




DOI: https://doi.org/10.33992/icmahs.v3i1.4499

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

POLTEKKES KEMENKES DENPASAR
Address: Jl. Sanitasi No.1, Sidakarya, Denpasar Selatan, Kota Denpasar, Bali 80224 (0361) 710447