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Abstract  
Background: Bacterial infections are a major global health concern, including 
in Indonesia.  This has led to an increased effort to find new antibacterial 
compounds in natural resources. Bacillus sp. SA11, with reported antibacterial 
potential, was previously isolated from mangrove soil in Denpasar, Bali. This 
study further investigated its antibacterial activity.  
Methods: Secondary metabolites were extracted from Bacillus sp. SA11 liquid 
culture using ethyl acetate. The extract was then screened for antibacterial 
activity against Escherichia coli ATCC 25922, Streptococcus mutans FNCC 0405, 
Staphylococcus aureus ATCC 25923, and Klebsiella pneumoniae ATCC 70060 
using the Kirby-Bauer method (three replicates). The chemical composition of 
the extract was analysed via GC-MS.  
Results: The ethyl acetate extract showed inhibition zones for E. coli, S. 
mutans, S. aureus, and K. pneumoniae of 11.7 ± 1.11 mm, 10.22 ± 1.5 mm, 8.7 ± 
0.94 mm, and 7.2 ± 0.67 mm, respectively. GC/MS analysis identified 165 
compounds, 20 of them have been  previously linked to antibacterial activities. 
The five most abundant compounds are n-hexadecanoic acid (6.91%), 2-
butoxyethyl acetate (6.3%), Bis(2-ethylhexyl) phthalate (4.45%), Phthalic acid, 
di(2-propylpentyl) ester (4.45%) and Benzene, 1,3,5-trimethyl- (Mesitylene).  
Conclusion: These findings provide preliminary evidence that Bacillus sp. 
SA11, isolated from the mangrove ecosystem, has the potential to produce 
antibacterial compounds.  
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INTRODUCTION 

Bacterial infections are a pressing worldwide health issue, particularly in Indonesia 
(1). Current clinical practice heavily relies on antibiotic therapy, yet the widespread misuse 
and overuse of these drugs have led to a serious crisis: the development of antibiotic-
resistant bacteria. This resistance can cause severe health complications and treatment 
failures. For example, Streptococcus pneumoniae has demonstrated resistance to Penicillin G. 
(2), and other notable resistant strains include multi-resistant Mycobacterium tuberculosis and 
Penicillin-Resistant Pneumococci (3).  

Infections caused by antibiotic-resistant bacteria pose a significant global challenge, 
leading to increased morbidity, higher treatment costs, and even fatalities (4). Previous 
studies in Indonesia have shown alarming rates of resistance, such as Escherichia coli 
exhibiting 90.27% resistance to ampicillin-sulbactam (5). Addressing antibiotic resistance 
requires a multi-faceted approach, including public education on responsible antibiotic use 
and, crucially, the exploration of novel antibacterial agents from natural sources. 
Continuous clinical and scientific innovation in drug development is essential to overcome 
this public health crisis (6). 

Mangrove forest ecosystems thrive in the intertidal zones of muddy coastlines (7), 
are rich biodiversity hotspots. These unique environments are increasingly recognized as 
promising sources for novel antimicrobial compounds. Prior research has identified various 
bacteria from mangrove ecosystems, such as Bacillus amyloliquefaciens, Bacillus cereus, 
Enterobacter hormaechei, Klebsiella pneumoniae, and Enterococcus gallinarum, exhibiting 
antibacterial activity against pathogens like Vibrio alginolyticus (8). Additionally, studies on 
endophytic bacteria isolated from mangroves have shown efficacy against Staphylococcus 
aureus, with clear zones of inhibition up to 13 mm (9). 

In previous research, 22 out of 68 bacterial isolates that had antibacterial potential 
were found from the soil where the Sonneratia alba mangrove plant lives in the Ngurah Rai 
Mangrove Forest Park, Denpasar (10). Among the obtained isolates, one bacterial isolate 
encoded as Bacillus sp. SA11 showed antibacterial activity of 3 mm against Streptococcus 
mutans using the agar block method, which served as an initial indication of the antibacterial 
potential of Bacillus sp. SA11. However, the reported information has not fully described the 
antibacterial activity of Bacillus sp. SA11 because the previous antibacterial screening did 
not include chemical solvent extraction. The use of chemical solvents for extraction is 
intended to allow for a more thorough analysis of the antibacterial potential of Bacillus sp. 
SA11. 

An earlier investigation on Bacillus sp SA11 did not explore the potential secondary 
metabolite compounds, as chemical solvents were not employed in the previous study (10). 
The present research concentrated on studying Bacillus sp. SA11, encompassing the 
extraction of active compounds using chemical solvent and screening for antibacterial 
activity. Therefore, the present study aimed to investigate whether Bacillus sp. SA11 could 
serve as a source for antibacterial compounds.  
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MATERIALS AND METHODS 

Gram staining 
The cell wall type and morphological features of Bacillus sp. SA11 were evaluated 

using the Gram staining technique (11).  Subsequent microscopic observation of the bacterial 
cells was performed at 1000x magnification using a Leica DM750 light microscope (Leica 
Microsystems, Germany). 

 
Extraction of secondary metabolites from Bacillus sp. SA11 

Briefly, cell colonies of Bacillus sp SA11 were grown in 100 mL of liquid ISP-2 media 
(4 g/L yeast extract, 10 g/L malt extract, 4 g/L dextrose, 20 g/L bacto agar) and incubated 
for 10 days on a shaker (150 rpm) (OHAUS, USA) at room temperature (12). Supernatant 
from pure culture isolates of Bacillus sp. SA11 was separated from the cell mass after 7 days. 
The cell-free supernatant was passed through a Whatman grade 1 filter paper (Cytiva, 
China) An equivalent volume of ethyl acetate pro-analysis was subsequently used for 
maceration of the filtrates (SMART-Lab, Indonesia). Finally, the liquid mixture was 
separated using a separating funnel. This extraction procedure was performed twice. The 
mixture was evaporated at 40 °C (Cole-Palmer, USA) to yield a thick extract, with its mass 
then determined using an analytical balance. 

 
Antibacterial Activity Test 

Antibacterial activity was evaluated using the disc diffusion assay, also known as the 
Kirby-Bauer method. The procedure involved inoculating an agar plate with the target 
bacteria and then placing a disc impregnated with the test substance onto the surface. For 
the experiment, separate suspensions of Staphylococcus aureus ATCC 25923, Streptococcus 
mutans FNCC 0405, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 700603 
were prepared by adding 200 µL of each into sterile Luria-Bertani (LB) broth (10 g/L 
tryptone, 5 g/L yeast extract, 10 g/L NaCl, 20 g/L bacto agar), these suspensions were then 
uniformly spread across LB agar plates using sterile cotton swabs. Subsequently, three 
sterile 6 mm paper discs were impregnated with 20 µL of the Bacillus sp. SA11 ethyl acetate 
extract. The discs were positioned on the inoculated LB agar plates and left to incubate for 
24 hours at 37°C (Memmert, Germany). For comparison, Levofloxacin was used as a positive 
control, while ethyl acetate served as a negative control. After incubation, the diameter of 
the clear zones around the discs was measured with a digital caliper (Vernier, USA) to 
determine the extract's inhibitory ability. The average diameter was then categorized into 
four levels of activity: weak (0-5 mm), moderate (5-10 mm), strong (10-20 mm), and very 
strong (> 20 mm)(13). 
 
GC-MS analysis 

Bacillus sp. SA11 ethyl acetate extracts were submitted to the laboratory of Forensic 
Polda Bali to run the GC-MS analysis. The chemical constituents of the sample were 
analysed using an Agilent Technologies 7890B Gas Chromatograph coupled with an Agilent 
5977B Mass Spectrometer Detector (MSD). Separation was performed on an Agilent HP-
5ms Ultra Inert capillary column (30 m × 250 µm × 0.25 µm) with helium as the carrier gas 
at a constant flow rate of 2.9 mL/min. An injection volume of 1 µL was introduced in 
splitless mode with an injector temperature of 290°C. The oven temperature was initially 
held at 70°C for 5 minutes, then increased to 290°C at a rate of 10°C/min, and held for a 
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final 3 minutes. The MS was operated in electron ionization (EI) mode at 70 eV, with the 
transfer line, ion source, and quadrupole temperatures set at 290°C, 230°C, and 150°C, 
respectively. Data were acquired in scan mode over a mass range of m/z 50–550 after a 3-
minute solvent delay. Compound identification was performed by comparing the mass 
spectra with the National Institute of Standards and Technology (NIST) and Wiley libraries. 
The resulting chromatogram was then interpreted by comparing the data with existing 
literature (11).  

 
RESULTS AND DISCUSSION 

Gram staining and observation 
Morphological characteristics showed that the isolate is grouped as Gram-positive 

bacteria. Bacterial cells have a rod-shaped morphology as observed under a light 
microscope (Figure 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Gram staining and cells observation of Bacillus sp. SA11 (indicated by a black 
arrow) under light microscopy with 1000x magnification.  

Antibacterial Activity Screening 
Extraction the supernatant of Bacillus sp. SA11 resulted in 0.743 gram of crude 

extracts.  No antibacterial activity was detected in the negative control against any of the 
bacterial strains tested. Meanwhile, the ethyl acetate extract of Bacillus sp. SA11 was able to 
inhibit the test bacteria S. aureus ATCC 25923 with an average inhibitory zone diameter of 

8.70.94mm, 10.221.5 mm against S. mutans FNCC 0405, 7.20.67 mm against K. pneumoniae 

ATCC 70060, and 11.71.11 mm against E. coli ATCC 25922 (Table 1, Figure 2). However, 
when compared with the antibacterial activity using levofloxacin, the observed antibacterial 
activity showed an inhibitory diameter approximately two to three times greater than that 
formed by the Bacillus sp. SA11 extract 
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Table 1. Antibacterial Activity Test Results 

Test Bacteria Sample Inhibition Zone 
Diameter (mm) ± 

SD 

Interpretation 

S. aureus ATCC 25923 Bacillus sp. SA11 extract 8.70.94 Moderate 

Levofloxacin  21.70.90 Very strong 

ethyl Acetate  00 - 

E. coli ATCC 25922 Bacillus sp. SA11 extract 11.71.11 Strong 

Levofloxacin  27.81.9 Very strong 

Ethyl Acetate  00 - 

S. mutans FNCC 0405 Bacillus sp. SA11 extract 10.221.5 Strong 

Levofloxacin  220.88 Very strong 

Ethyl Acetate  00 - 

K. pneumoniae ATCC 
70060 

Bacillus sp. SA11 extract 7.20.67 Moderate 

Levofloxacin  26.71.0 Very strong 

Ethyl Acetate  00 - 

 

 
Figure 2. Antibacterial Activity Test of Bacillus sp. SA11 extract against test bacteria A: S. 
aureus ATCC 25923, B: E. coli ATCC 25922, C: S. mutans FNCC 0405, D: K. pneumoniae ATCC 
700603. 
 

The ethyl acetate extract of Bacillus sp. SA11 demonstrated varying degrees of 
antibacterial activity against the tested pathogens. Specifically, it exhibited moderate 
antibacterial activity against Staphylococcus aureus ATCC 25923, with an average inhibition 
zone diameter of 8.7 ± 0.94 mm. Stronger activity was observed against Streptococcus mutans 
FNCC 0405, yielding an average inhibition zone of 10.22 ± 1.5 mm, and against Escherichia 
coli ATCC 25922, which showed the most potent inhibition with an average zone of 11.7 ± 
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1.11 mm. In contrast, Klebsiella pneumoniae ATCC 70060 exhibited moderate susceptibility, 
with an average inhibition zone of 7.2 ± 0.67 mm.  

These findings indicate that the Bacillus sp. SA11 extract possesses broad-spectrum 
antibacterial activity, effectively inhibiting the growth of both Gram-positive (S. aureus, S. 
mutans) and Gram-negative (E. coli, K. pneumoniae) bacteria (14). This broad efficacy aligns 
with previous reports of bioactive compound production by endophytic bacteria from 
mangrove plants, including halogenases, terpenoids, coumarins, alkaloids, peptides, and 
polyketides. Genera such as Burkholderia, Bacillus, and Azospirillum, isolated from Sonneratia 
alba in mangrove environments, have been identified as producers of antibacterial 
compounds (15). The observed antibacterial activity of Bacillus sp. SA11 may be attributed 
to the production of bacteriocins, protein compounds known for their bactericidal effects on 
other microorganisms (16, 17). Bacteriocins produced by Bacillus species typically induce 
damage to bacterial cell membranes, disrupting the controlled influx and efflux of essential 
cellular components and consequently impeding metabolic processes. This mechanism 
often involves the binding of bacteriocins to lipid components of the bacterial cell 
membrane, facilitated by their nonpolar nature (18). However, further research is required 
to confirm whether the antibacterial properties observed in Bacillus sp. SA11 are specifically 
associated with bacteriocins, as the precise quantity and nature of chemical compounds in 
the ethyl acetate extract were not quantified in this preliminary stage. 

The differential antibacterial activity observed against the four test bacteria, with E. 
coli ATCC 25922 showing the highest susceptibility, could be explained by variations in 
bacterial defence mechanisms. The potential for Bacillus sp. SA11 to synthesize positively 
charged antibacterial compounds, such as bacteriocins, could be a mechanism for inhibiting 
Gram-negative bacteria. For example, the interaction of these compounds with the anionic 
outer membrane of E. coli could result in pronounced membrane disruption and suppress 
bacterial growth. Each bacterial species possesses unique cell wall compositions and 
resistance strategies, contributing to the varied responses to antibacterial agents (19). 
 
GC-MS analysis 

The GC-MS analysis detected 165 different peaks from the extract of Bacillus sp. SA11 
(Figure 3. Of these 165 compounds, 20 of them highest percentages compounds have been 
corresponded with antibacterial activity based on literature studies (Table 2). The results of 
GC-MS analysis in Table 2 show that there are 12 groups of compounds that contain 
antibacterial, antioxidant, anticarcinogenic, and anticancer properties, as the compound 
benzeneacetamide, which has antibacterial, antioxidant, and anticancer activities. The three 
main compound components are compounds with large area percentages, namely n-
hexadecanoic acid at 6.91%, 2-Butoxyethyl acetate at 6.3%, and Phthalic acid, di(2-
propylpentyl) ester at 4.45%. Previous research on Skimmia anquetilia extract indicated that 
the presence of n-hexadecanoic acid has strong correlation with antibacterial activity (20). 
Similar findings on GC-MS analysis of Eucalyptus from Tunisia contained the component 
2-butoxyethyl acetate, which was shown to have antimicrobial activity on E. coli and Listeria 
monocytogenes (21).  

Intriguingly, the GC-MS profile also revealed the presence of two phthalate esters: 
bis(2-ethylhexyl) phthalate (DEHP) and phthalic acid, di(2-propylpentyl) ester. The 
detection of such compounds in biological extracts is a subject of considerable scientific 
debate. Phthalate esters, particularly DEHP, are high-production-volume chemicals used 
extensively as plasticizers in countless laboratory and industrial products, including 
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solvents, plasticware, and GC-MS components (22). Consequently, they are recognized as 
ubiquitous environmental and laboratory contaminants, and their detection in biological 
samples often arises from analytical artifacts rather than endogenous production (23).  

Conversely, a growing body of literature reports the isolation of DEHP and other 
phthalates from various microorganisms and plants, where they are proposed to function 
as bioactive secondary metabolites (24). For instance, de novo biosynthesis of DEHP has 
been suggested in fungi and algae under controlled laboratory conditions designed to 
minimize external contamination (25). However, definitive proof of biosynthesis, such as 
through stable isotope labeling studies, remains rare in the literature. Therefore, while the 
presence of DEHP and phthalic acid, di(2-propylpentyl) ester in the Bacillus sp. SA11 extract 
is a notable finding, their origin cannot be definitively assigned as biosynthetic without 
further, rigorous investigation to exclude all potential sources of anthropogenic 
contamination. 
 

 
 
Figure 3. GC-MS chromatogram profile of Bacillus sp. SA11 ethyl acetate extract 

 
Table 2: Twenty selected compounds from GC-MS profile of ethyl acetate extract with antibacterial 

activities  

Compound Name RT (min) Area (%) 
Molecular 
Formula 

Reported 
Activity 

References 

n-Hexadecanoic 
acid 

19,095 6.91 C₁₆H₃₂O₂ Antibacterial (26) 

2-Butoxyethyl 
acetate 

7,295 6.3 C₈H₁₆O₃ Antibacterial (27) 

Bis(2-ethylhexyl) 
phthalate 

24,087 4.45 C₂₄H₃₈O₄ Antibacterial (28) 

Phthalic acid, 
di(2-propylpentyl) 
ester 

24,08 4.45 C26H26O4 Antibacterial (29)  
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Benzene, 1,3,5-
trimethyl- 
(Mesitylene) 

4,616 3.76 C₉H₁₂ Antibacterial (30) 

Benzaldehyde 3,892 3.19 C₇H₆O Antibacterial (31) 

9-Octadecenoic 
acid (Z)- (Oleic 
Acid) 

20,716 3.17 C₁₈H₃₄O₂ Antibacterial (32) 

Octadecanoic acid 
(Stearic Acid) 

20,922 2.81 C₁₈H₃₆O₂ Antibacterial (33) 

Cyclohexene, 
1,6,6-trimethyl- 

8,888 2.74 C₉H₁₆ Antibacterial (34) 

1,2,4-Triazol-4-
amine, N-(2-
thienylmethyl)- 

16,330 2.66 C₇H₈N₄S Antibacterial (35) 

Pyrrolo (1,2-
a]pyrazine-1,4-
dione, hexahydro-
3-(2-
methylpropyl)- 

18,835 2.63 C₁₁H₁₈N₂O₂ Antibacterial (36) 

Benzeneacetamide 12,693 2.37 C₈H₉NO Antibacterial 
(37) 

 

6-Octadecenoic 
acid, (Z)- 

20,759 2.21 C₁₈H₃₄O₂ Antibacterial (38) 

Dodecanoic acid 14,812 2.11 C₁₂H₂₄O₂ Antibacterial 
(39) 

 

2-Propenoic acid, 
2-ethylhexyl ester 

9,991 1.78 C₁₁H₂₀O₂ Antibacterial 
(40) 

 

Pentadecanoic 
acid 

17,771 1.64 C₁₅H₃₀O₂ Antibacterial (41) 

Diethyltrisulphide 18,635 1.63 C₄H₁₀S₃ Antibacterial (42) 

Tetradecanoic 
acid (Myristic 
acid) 

16,605 1.51 C₁₄H₂₈O₂ Antibacterial (43) 

1-Octadecene 20,147 1.43 C₁₈H₃₆ Antifungal (44) 

2,5-
Cyclohexadiene-
1,4-dione, 2,6-
bis(1,1-
dimethylethyl)- 

13,520 1.39 C₁₄H₂₀O₂ Antibacterial (45) 

 

CLINICAL IMPLICATION  

This study provides preliminary yet significant clinical implications by 
demonstrating the broad-spectrum antibacterial activity of Bacillus sp. SA11 from mangrove 
soil against selected Gram-positive (S. aureus, S. mutans) and Gram-negative (E. coli, K. 
pneumoniae) pathogens. In an era of escalating antibiotic resistance, identifying novel 
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sources of antibacterial compounds is critical. The GC-MS analysis, which pinpointed 
specific compounds like n-hexadecanoic acid, 2-butoxyethyl acetate, and Phthalic acid, di(2-
propylpentyl) ester, provides a crucial starting point for further research. These findings 
suggest that Bacillus sp. SA11 could be a valuable natural resource for isolating and 
developing new therapeutic agents, potentially contributing to the pipeline of next-
generation antibiotics to combat challenging bacterial infections in clinical settings. 

LIMITATIONS 

This study provides valuable preliminary findings, but it has several limitations. 
Primarily, the research utilized a crude ethyl acetate extract of Bacillus sp. SA11, meaning 
the specific active compounds identified by GC-MS were not isolated, purified, or 
individually tested for their antibacterial efficacy. Consequently, the exact contribution of 
each identified compound to the observed broad-spectrum activity remains unconfirmed. 
Furthermore, the study did not quantify the concentration of the active metabolites within 
the extract, which likely explains the smaller inhibition zones compared to the pure 
antibiotic positive control. Future research should focus on the isolation, purification, and 
characterization of these compounds, along with detailed studies on their mechanism of 
action and in vivo efficacy. 
 
CONCLUSIONS 

This study successfully demonstrated that the ethyl acetate extract of Bacillus sp. 
SA11, isolated from the Ngurah Rai Mangrove Forest, possesses broad-spectrum 
antibacterial activity against both Gram-positive (Staphylococcus aureus and Streptococcus 
mutans) and Gram-negative (Escherichia coli and Klebsiella pneumoniae). Through GC/MS 
analysis, 165 different compounds were identified, including twenty previously associated 
with antibacterial properties, with n-hexadecanoic acid, 2-butoxyethyl acetate, Bis(2-
ethylhexyl) phthalate, Phthalic acid, di(2-propylpentyl) ester and Benzene, 1,3,5-trimethyl- 
(Mesitylene) being the most prominent compounds. These results provide strong 
preliminary evidence that Bacillus sp. SA11 from the mangrove ecosystem represents a 
promising natural resource for the identification and development of new antibacterial 
compounds. 
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